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Tremella cetrariellae (Tremellales, Basidiomycota, Fungi), a new
lichenicolous fungus on Cetrariella delisei

A. M. MILLANES, P. DIEDERICH, M. WESTBERG, E. PIPPOLA and
M. WEDIN

Abstract: Tremella cetrariicola is shown to be heterogeneous and to represent two phylogenetic sister
species, which are shown here to be distinct in the morphology of the galls, basidia and basidiospores,
and in their host selection. Tremella cetrariicola s. str. is confined to Tuckermannopsis, whilst the material
on Cetrariella delisei is described here as the new Tremella cetrariellae. The new species is known from
Finland, Greenland, Norway, Russia, Svalbard, and Sweden.
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Introduction

A large number of Tremella s. lat. species
grow on lichens (Diederich 1986, 1996,
2003, 2007; Diederich & Marson 1988;
Diederich & Christiansen 1994; Sérusiaux
et al. 2003; Zamora et al. 2011, 2016;
Millanes et al. 2012, 2014a; Diederich et al.
2014). These taxa are, just like many other
Tremella species, mycoparasites, and no
interactions with the host lichen photobiont
algae have been observed (Grube & de los
Ríos 2001). They often induce the produc-
tion of galls or deformations on the host
thallus or apothecia, although in some
species basidiomata develop in the absence of
gall-like structures (Diederich 1996; Zamora
et al. 2011). Diederich (1996) described the
majority of the known lichen-inhabiting

species in his monograph of the lichenico-
lous heterobasidiomycetes, and his study
raised the interest of lichenologists and
mycologists in these previously much
neglected fungi. As a result, the known
diversity in the group has increased notably
in recent decades, and more taxa will surely
be described in the future (Millanes et al.
2012; Zamora et al. in press).

Species delimitation is often difficult in
lichenicolous representatives of Tremella, due
to the paucity of morphological characters,
but in most cases, the host selection has
proved to be a good indicator of species
boundaries in this generally very host-specific
group of fungi (Diederich 1996; Millanes
et al. 2012; Zamora et al. in press). Tremella
cetrariicola is a widespread species and
its hitherto known host range includes
Cetrariella delisei, Tuckermannopsis americana,
T. chlorophylla and T. ciliaris (Diederich
1996). Several additional collections of
Tremella on Cetrariella delisei have been made
in Finland, Greenland, Norway, Russia,
Svalbard and Sweden. Both the morphology
and the host selection indicate that these
specimens constitute a distinct species,
which is described below. We will further
assess the phylogenetic relationships of the
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new taxon with Tremella cetrariicola and with
other Tremella species.

Material and Methods

Morphological studies

Herbarium specimens are deposited in OULU, S,
TUR, UGDA and UPS, and in the private collection of
P. Diederich. External morphology of herbarium speci-
mens was examined and measured using an Olympus
SZX16 or a Leica MZ 7.5 dissecting microscope.
Macroscopic photographs were either taken using an
Olympus DP11 camera on an Olympus SZX16 dissecting
microscope, or using a Canon 40D camera with a Nikon
BD Plan ×10 microscope objective, StackShot (Cognisys)
and Helicon Focus (HeliconSoft) for increasing the depth
of field. Microscopical structures were studied using
hand-cut sections stained with Phloxin (1% in water) after
pretreatment with KOH (5%), following the methods of
Diederich (1996), and observed with an Olympus CX40
microscope or a Leica DMLB. Drawings were performed
by direct observation. Microscopic photographs were
prepared using an Olympus BX53 microscope fitted with
differential interference contrast (DIC), and an Olympus
DP11 camera; or a Leica DMLB microscope with DIC,
using a Leica EC3 camera, and Helicon Focus. The
apiculus was not included in basidiospore measurements.
Basidiospore length/width ratio is expressed as Q. Sizes in
parentheses represent minimum and maximum observed
values. When the number of observations is less than 50, it
is indicated within parentheses.

Molecular studies

Choice of additional taxa and outgroup

In addition to the eight specimens studied, 23 speci-
mens representing one Biatoropsis, one Cuniculitrema, 15
Tremella and one Trimorphomyces species were included
in the molecular study (Table 1). The additional
sampling included five specimens of Tremella cetrariicola
for comparison, the type of the genus Tremella
(T. mesenterica), terminals of the Aurantia, Indecorata
and Fuciformis groups distinguished by Chen (1998),
terminals representing three groups of lichenicolous
species distinguished byMillanes et al. (2011), and finally
two teleomorphic species within the Tremellales that
grouped together with lichenicolous taxa, although with-
out support, in Millanes et al. (2011), viz. Cuniculitrema
polymorpha and Trimorphomyces papilionaceus. Syzygospora
effibulata was used as outgroup.

Species names, voucher information, and GenBank
accession numbers are given in Table 1.

DNA extraction and amplification

DNA was extracted directly from the specimens
examined (Table 1). The outer surface of the selected
galls, in which most of the tremellalean hyphae and

hymenial components are located, was sectioned and
separated with a scalpel in order to minimize the lichen
tissue in the DNA extraction. Approximately three or
four basidiomata were selected from each specimen for
DNA extraction. Total DNA was extracted using the
Qiagen DNeasy Plant MiniKit, according to the manu-
facturer’s instructions, but using 50 μl of water in each of
the last two steps of final elution.

For PCR amplification, we used general fungal
primers in combination with primers designed to selec-
tively amplify the DNA from tremellalean fungi
(Millanes et al. 2011). The primers ITS1F (Gardes &
Bruns 1993), BasidLSU3-3 and BasidLSU1-5 (Millanes
et al. 2011), and LR5 (Vilgalys &Hester 1990) were used
to amplify the internal transcribed spacer I, the 5.8
rDNA gene, the internal transcribed spacer II and a
fragment of c. 1000 bp in the nLSU rDNA gene.

PCR amplifications were performed using Illustra™
Hot Start PCR beads, according to the manufacturer’s
instructions, with the following settings: for the primer
pair ITS1F/BasidLSU3-3, we used initial denaturing at
95 °C for 3min, four cycles (95 °C for 40 s, 53 °C for 40 s
and 72 °C for 90 s), four cycles (95 °C for 30 s, 50 °C for
30 s and 72 °C for 90 s), and finally 32 cycles (95 °C for
30 s, 47 °C for 30 s and 72 °C for 90 s) with a final
extension at 72 °C for 480 s. For the primer pair
BasidLSU1-5/LR5, we used initial denaturing at 95 °C
for 3min, four cycles (95 °C for 40 s, 56 °C for 40 s and
72 °C for 90 s), four cycles (95 °C for 30 s, 53 °C for 30 s
and 72 °C for 90 s) and finally 32 cycles (95 °C for 30 s,
50 °C for 30 s and 72 °C for 90 s) with a final extension at
72 °C for 420 s. Before sequencing, the PCR products
were purified using the PCR-M® Clean-up System of
Viogene or the enzymatic method Exo-sap-IT© provided
by USB Corporation. In all PCR reactions, we used 2 μl of
DNA extraction, and 0·5 μl of each primer (primer
concentration 10 μM).

The PCR-products were sequenced using the
DYEnamic ET terminator cycle sequencing kit
(Amersham Biosciences, Freiburg, Germany), with the
following settings: 25 cycles (95 °C for 20 s, 50 °C for
15 s, and 60 °C for 60 s). Post-reaction clean-up was
carried out following DYEnamic ET terminator cycle
sequencing kit protocols (Amersham Biosciences). The
purified samples were run on an automated sequencer
(ABI Prism 377) located in the Molecular Systematic
Laboratory at the Swedish Museum of Natural History,
or on an automated sequencer (ABI Prism 3100-Avant)
in the Genomic Unit at Rey Juan Carlos University.

Sequence alignment and phylogenetic analyses

Sequences were aligned using the Q-INS-i algorithm
(Katoh & Toh 2008a) of the multiple sequence
alignment software MAFFT version 6.611 (Katoh et al.
2002; Katoh & Toh 2008b). Major insertions and
ambiguous regions were identified and eliminated with
Gblocks version 0.91b (Castresana 2000).

Dataset congruence was assessed manually by
analyzing the datasets separately by maximum likelihood
bootstrapping. Conflict among clades was considered as
significant if a significantly supported clade (bootstrap
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support ≥ 70%; Hillis & Bull 1993) for one marker was
contradicted with significant support by another. No
incongruence was found and the data were concatenated
into a single dataset.

Bayesian analyses were performed by Markov chain
Monte Carlo (MCMC) sampling as implemented in the
software MrBayes 3.2.4 (Ronquist et al. 2012). We
selected substitution models for each of the four gene
regions (i.e., ITS1, 5.8S, ITS2, and nLSU of the nuclear
ribosomal DNA), using the Akaike Information Criterion
(AIC) as implemented in jModeltest (Guindon &Gascuel
2003; Posada 2008).We used full likelihood optimization,
six discrete gamma categories, and selected only among
the 24 models implemented in MrBayes. A SYM+Γ
model was selected for the ITS1, a SYM+I+Γ for the
5.8S and ITS2, and finally a GTR+I for the nuclear LSU
rDNA. Analyses settings were as those described in
Millanes et al. (2012), but using three runs for theMCMC
search. Maximum likelihood analyses were performed in
RAxMLGUI 1.3 (Silvestro &Michalak 2012), a graphical
front-end for RAxML (Stamatakis 2006), using the
GTRGAMMAI model of nucleotide substitution applied

to all partitions.We performed a thoroughML searchwith
a total of 100 runs and assessed node support by thorough
bootstrap using 1000 bootstrap pseudoreplicates.

Results

Phylogenetic results

We generated 21 new sequences (11 ITS
and 10 nLSU rDNA), which were aligned
together with sequences already available in
GenBank (Table 1). Two data matrices were
produced, one including ITS and one
including nLSU rDNA.

The combined matrix contained 1306
characters (ITS1: 1–104; 5.8S: 105–261;
ITS2: 262–375; nLSU: 376–1306). The best
tree obtained from the ML analysis had an
ln-likelihood value of −7560·0728. The

TABLE 1. GenBank accession numbers for the species used in this study with the outgroup Syzygospora effibulata. Newly
obtained sequences are in bold.

GenBank Accession Numbers

Species name Specimen data ITS nLSU

Biatoropsis usnearum KJ404876 KJ437221
Cuniculitrema polymorpha AF444320 AY032662
Tremella aurantia AF444315 AF189842
T. caloplacae JN053469 JN043574
T. candelariellae JN053470 JN043575
T. cetrariellae-a Sweden, 2013, Westberg & Arup (S-F264651) KT334555 KT334566
T. cetrariellae-b Norway, 2014, Amo (S-F264668) KT334556 KT334567
T. cetrariellae-c Sweden, 2013, Millanes 874 (S-F264669) KT334557 KT334568
T. cetrariellae-d Finland, 2007, Räma (OULU 0036202) KT334558 KT334569
T. cetrariellae-e Norway, 2014, Millanes 1108 (S-F264667) KT334559 KT334570
T. cetrariellae-f Norway, 2014, Westberg (dark galls) (S-F264652) KT334560 KT334571
T. cetrariellae-g Norway, 2014, Westberg (pale galls) (S-F264652) KT334561 -
T. cetrariellae (Type) Norway, 2014, Millanes 1130 (S-F264653) KT334562 KT334572
T. cetrariicola-a JN053490 JN043596
T. cetrariicola-b JN053491 JN043597
T. cetrariicola-c UK, 2010, Millanes 575b (S-F264670) KT334563 KT334573
T. cetrariicola-d Sweden, 2001, Wedin 6727 (UPS) KT334564 KT334574
T. cetrariicola-e Sweden, 2003, Wedin 7303 (UPS) KT334565 KT334575
T. cladoniae JN053477 JN043583
T. coppinsii JN053496 JN043602
T. hypogymniae JN053484 JN043590
T. everniae JN053493 JN043599
T. exigua AF042430 AF042248
T. fuciformis JN053466 JN043571
T. indecorata JN053503 JN043610
T. lobariacearum JN053473 JN043579
T. mesenterica JN053463 JN043568
T. parmeliarum JN053511 JN043618
T. phaeophysciae JN053479 JN043585
Trimorphomyces papilionaceus AF444483 AF075491
Syzygospora effibulata (outgroup) AF190007 AF075498
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Bayesian analysis halted after 400 000
generations, at which time the average stan-
dard deviation of split frequencies across
runs was 0·009, which indicates that the three
runs had converged (<0·01). A majority-rule
consensus tree was constructed from the
6000 trees of the stationary tree sample.
Since the topologies of the ML and the
Bayesian trees were congruent, only the 50%
majority-rule consensus tree from the
Bayesian analysis is shown in Fig. 1.
The eight specimens ofT. cetrariellae formed

a single clade supported by bothMLbootstrap
(99%) and Bayesian posterior probabilities
(1·0). This clade is divided into two subclades,
which are also strongly supported by both
methods: ML bootstrap (100%) and Bayesian
posterior probabilities (1·0) (Fig. 1). Tremella
cetrariellae forms a sister clade to Tremella
cetrariicola, and this relationship is supported
by both ML bootstrap (72%) and Bayesian
posterior probabilities (1·0). Otherwise, the
topology of the tree is congruent with previous
phylogenies including similar taxon sampling
(Millanes et al. 2011, 2012).

The Species

Tremella cetrariellae Millanes,
Diederich, M. Westb., Pippola & Wedin
sp. nov.

MycoBank No.: MB 814481

Lichenicolous on Cetrariella delisei, inducing pale to dark
brown or black, convex, often tuberculate galls,
0·1–1·5mm diam., on the thallus surface. Basidia 2-, 3- or
4-celled, with transverse, longitudinal, or oblique septa.
Basidiospores ellipsoid to subglobose, 4–8×4–8 μm,
Q = 0·83–1·50. The species is phylogenetically closely
related to Tremella cetrariicola, from which the new species
differs by its predominantly tuberculate galls, longer, often
transversely septate basidia, and typical tremelloid spores.

Type: Norway, Finnmark, Sør Varanger, Balgami,
area with siliceous rocks, Empetrum and Betula nana,
next to the sea and to a small lake, 69°58·757'N, 29°
34·883'E, alt. 21m, 4 July 2014, A. Millanes 1130
(S F264653––holotype).

(Figs 2 & 3)

Sexual morph: Basidiomata superficial,
waxy gelatinous, inducing the formation of
galls on the thallus surface (Fig. 3A–F).Galls

pale to dark brown or black, at first regularly
convex to subglobose, tuberculate when
mature, 0·1–1·5mm diam., very rarely with a
central depression. Context hyphae thin- to
thick-walled, often with clamp connections,
1·5–4·0 μm diam. (Fig. 2O); haustorial
branches frequent, mother cells spherical to
subspherical, (2·5–)3·0–4·0×3·0–4·0(–5·0)
μm, haustorial filament 1 μm diam., up to
15 μm long (Figs 2O & 3N). Hymenium
hyaline, containing numerous probasidia;
probasidial initials clavate, proliferations
occurring through the basal clamp (Figs 2A,
2N, 3J). Basidia, when mature, 2-, 3-, or
4-celled, with transverse, longitudinal, or
oblique septa (Figs 2A–L, 3G–K); a combi-
nation of transverse and longitudinal or
oblique septa can also be observed in the
same basidium (Figs 2M & N, 3L & M);
transversely, obliquely and longitudinally
septate basidia are often found within the
same gall; when transversely septate, con-
stricted at the septum, the lower cell with an
attenuated stalk-like base, often longer than
the upper cell, 10–31(–33) × 4–11 μm (incl.
stalk-like base; excl. epibasidia), lower part of
the stalk-like base 2–4 μm diam.; when
longitudinally or obliquely septate, (8–)9–
13×11–18 μm; epibasidia subcylindrical, up
to 28 μm long, (1–)2–5 μmdiam. (Figs 2B–L,
2N, 3H–I, 3K–M). Basidiospores ellipsoid to
subglobose, (3–)4–8× (3–)4–8 μm,Q = 0·83–
1·50(–1·60) (n = 44) with a distinct apiculus,
c. 1 μm diam. (Figs 2Q–T, 3P–S).
Asexualmorph:Conidia catenulate, initially

hyaline, later becoming brownish, individual
conidia (2–)3–8×3–10 μm have been observed
within the basidioma (Figs 2P, 3O).

Etymology. In reference to the host,
Cetrariella delisei.

Host. Cetrariella delisei (thallus).

Distribution. Known from Finland,
Greenland, Norway, Russia, Svalbard and
Sweden.

Additional specimens examined (all on Cetrariella delisei).
Finland: Inarin Lappi: c. 8 km NW of Viitaniemi, 5 ix
1936, S. Ahlner (S F264686). Enontekiön Lappi:
Enontekiö, Kilpisjärvi, 23 vii 1948, A. J. Huuskonen,
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FIG. 1. 50% majority-rule Bayesian consensus tree with average branch lengths from the combined analyses of ITS
and nLSU datasets. Bayesian PP values≥0·95 are indicated above the branches, and maximum likelihood
bootstrap values≥ 70% below the branches. New species are indicated in bold font and the type specimen is

indicated with (T). Branch lengths are scaled to the expected number of nucleotide substitutions per site.
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Lichenotheca Fennica 692 (OULUL002848, TUR 6655).
Perä-Pohjanmaa: Simo, Kivalot, Ala-Penikka, 1988,
P. Halonen 43 (OULU F073604). Oulun Pohjanmaa:
Ylikiiminki, Kontionsuo, 23 vii 2007, T. Rämä (OULU
0036202).—Greenland: Qeqqata: Kangerluqssuaq,
Husvika, 22 viii 1931, J. K. Tornrøe (S F264655).
Ilulissat: Disko Bay, close to the Arctic Station, 29 ix
1927, M. P. Porsild (S F264660).—Norway: Finnmark:
Båtsfjord, Hill W of Adamsvann, 70°32·88'N,
29°26·33'E, 2014, A. Millanes 1108 (S F264667);
Nesseby municipality, 11 km SW the village Nesseby in
the Varanger Peninsula, between the villages Karlebotn
and Reppen, 70°06·146'N, 28°37·183'E, 4 vii 2014,
M. Westberg (S F264652); Sør Varanger, Balgami,
69°58·757'N, 29°34·883'E, 4 vii 2014, G. Amo
(S F264668).—Russia: Murmansk: Khibiny Mts., SE
slope of Lovchor Mt., 4·5 km SE of Kirovsk, 9 viii 2000,
M. Kukwa (UGDA).—Svalbard: Blomstrandhalvøya,
23 vii 2010, D. Fontaneto (S F178310).—Sweden:
Jämtland: Åre par., Storlien, 30 vii 1909, E. P. Vrang
(UPS). Torne Lappmark: Jukkasjärvi par., in the valley
Gearggevággi (Kärkevagge) between Vásseèohkka
(Vassitjåkko) and Gearggeèorru (Kärketjårro), c. 10 km

ESE of Riksgränsen, 5 viii 2013, M. Westberg & U. Arup
(S F264651); Jukkasjärvi par., Abisko, 68°25·94'N,
18°31·21'E, 2013, A. Millanes 874 (S F264669).

Discussion

Our morphological and phylogenetic results
confirm that Tremella cetrariellae is a distinct
species, different from Tremella cetrariicola.
Firstly, the galls of the new species are
predominantly tuberculate when mature
(Fig. 3A–E) and the central depression often
present in Tremella cetrariicola (Diederich
1996; this study, Fig. 4A) is only rarely, if at
all, observed in T. cetrariellae (Fig. 3F).
Secondly, the basidia of the new species are
longer than those of Tremella cetrariicola,
which reach a maximum 22 μm in length.
Basidia of Tremella cetrariellae can be
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FIG. 2. Tremella cetrariellae. A–N, basidia; O, hyphae with clamps and haustorial branches; P, catenulate conidia;
Q–T, basidiospores (A–E, H–M, O–S, holotype; N, T & S, F264651; F & G, OULU L002848). Scale = 10 μm.

364 THE LICHENOLOGIST Vol. 47



S

P

Q

R

C D E F

G

H

I

J

K

L

M

N

O

A B

FIG. 3. Tremella cetrariellae. A–F, morphological variation in gall morphology (A, holotype; B, S F264669; C & D,
OULU L002848; E, S F264651; F, S F264652); G–M, basidia showing different septation patterns; N, haustorial
cells; O, catenulate conidia; P–S, basidiospores (G–J, N–R, holotype; K–M, OULU L002848; S, S F264651).

Scales: A–F = 0·5mm; G–O = 10 μm; P–S = 5 μm. In colour online.
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2–4-celled, with septa that can be longitu-
dinal, oblique or transverse (Figs 2A–N,
3G–M), whereas basidia of Tremella
cetrariicola are predominantly 2-celled, and
only rarely show transverse septa. The
combination of longitudinal, oblique and
transverse septa in the same basidia (Figs 2M
& N, 3L & M) has not been observed in
Tremella cetrariicola. One of the main diag-
nostic characters of T. cetrariicola mentioned
by Diederich (1996) was the somewhat
limoniform spores, with a refractive apiculus
situated at one of the narrow ends of the
spore (Fig. 4B & C). This contrasts with
most other Tremella species, in which
ellipsoid to subspherical spores usually pre-
sent a lateral apiculus. Figure 2S & T and
Fig. 3R & S represent Tremella cetrariellae
with typical Tremella spores with a lateral
apiculus, while spores in Figs 2Q & R and 3P
&Q are similar to those of T. cetrariicola. The
presence of typical Tremella spores is thus
characteristic of the new species, whereas
the presence of limoniform spores, strongly
developed in T. cetrariicola and occasionally
in T. cetrariellae, characterizes the clade
formed by both species. The presence of
catenulate conidia observed in Tremella
cetrariellae (Figs 2P, 3O) has never been
reported in T. cetrariicola. Finally, the new
species is confined to Cetrariella delisei.
Material growing on this host had been
included in the description of Tremella

cetrariicola (Diederich 1996), and Urbana-
vichus et al. (2007) later reported an
additional specimen from Russia. After our
further studies, we can now confirm that
this material must also be included within
T. cetrariellae.
Our topology suggests that Tremella

cetrariellae might contain two cryptic species
(subclades 1 and 2, Fig. 1). With the data at
hand, however, it is not possible to distin-
guish the subclades based on morphological
or ecological data, and sampling within
subclade 1 is very scant. For the time being,
we consider the entire material to belong to a
single species, although the infraspecific
genetic variation is higher than that of its
sister species Tremella cetrariicola (Fig. 1).
Millanes et al. (2011) showed that most

Tremella species growing on Parmeliaceae
grouped together, although this relationship
was recovered without strong support. In our
analyses, the new species is included in a
monophyletic clade that only includes other
species growing on Parmeliaceae. Tremella
cetrariicola is the sister taxon of T. cetrariellae.
The hosts of both species belong to the
cetrarioid core group of the Parmeliaceae, but
whereas Tuckermannopsis species are placed
in the ‘Nephromopsis’ clade, Cetrariella
delisei belongs to the ‘Cetraria’ clade (Nelsen
et al. 2011). Moreover, the host of the
new species, Cetrariella delisei, contains
gyrophoric and hiascic acids, which are

A B

C

FIG. 4. Tremella cetrariicola for comparison (isotype—hb. Diederich). A, central depression typically observed
in many galls; B & C, ellipsoid spores with a refractive basal apiculus. Scales: A = 0·5mm; B & C = 5 μm.

In colour online.
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absent in Tuckermannopsis species (Kärnefelt
et al. 1993). It has been shown that the
occurrence of lichenicolous fungi can be
influenced by the chemistry of their liche-
nized hosts (Lawrey 1995; Merinero et al.
2015). This would support a scenario in
which the separation of T. cetrariicola and T.
cetrariellae would have occurred through a
host switch, as has been shown to occur in
other lichenicolous tremellalean species
(Millanes et al. 2014b), followed by an
adaptation to a different chemical environ-
ment. There are, moreover, other factors that
could have hindered genetic flow and
therefore favoured the separation of the
two species, after a hypothetical host
switch. These are the different geographical
distribution of the hosts (arctoalpine in
Cetrariella delisei, while more widespread in
Tuckermannopsis) and the different habitat
(epigeic in Cetrariella delisei vs. epiphytic in
Tuckermannopsis). Further studies are needed,
however, to assess hypotheses related to the
mode of speciation, but these are beyond the
scope of this work.
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